研究業績

丸尾 昭二

  1. T. Ibi, E. Komada, T. Furukawa, S. Maruo, “Multi-scale, multi-depth lithography using optical fibers for microfluidic applications,” Microfluidics and Nanofluidics 22, Iss. 69, 2018
  2. K. Koyama, M. Takakura, T. Furukawa, and S. Maruo, “3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination,” Micromachines 9, No. 6, 261, 2018
  3. T. Kageyama, C. Yoshimura, D. Myasnikova, K. Kataoka, T. Nittami, S. Maruo, and J. Fukuda, “Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine,” Biomaterials 154, 291-300, 2018
  4. K. Kakegawa, R. Harigane, M. Aida, H. Miyahara, S. Maruo, A. Okino, “Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System.”, Analytical Sciences 33(4), pp.505-510, 2017
  5. T. Zandrini, S. Taniguchi, S. Maruo, “Magnetically driven micromachines created by two-photon microfabrication and selective electroless magnetite-plating for lab-on-a-chip applications.”, Micromachines 8(2), Article No. 35, pp.1-8, 2016
  6. S. Maruo, K. Sugiyama, Y. Daicho, “Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters.”, Proc. of SPIE, 8970, pp.89700H-1 - 89700H-9, 2014
  7. K. Monri and S. Maruo, “Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters.”, Sensors and Actuators A, 200, pp.31-36, 2013
  8. Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding.”, Opt. Mater. Express, 3(6), pp.875-883, 2013
  9. T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo “Development of optically-driven metallic microrotors using two-photon microfabrication.”, Journal of Laser Micro / Nanoengineering, 8(1), pp.6-10, 2013
  10. S. Maruo, “Spiral-shaped piezoelectric energy harvester produced by three-dimensional molding process based on microstereolithograhpy.”, Proc. of the 6th International Congress on Laser Advanced Materials Processing (LAMP 2013), p.162, 2013

前川 卓

  1. H. Lin, T. Maekawa, and C. Deng “Survey on geometric iterative methods and their applications”, Computer-Aided Design, 95, pp.40-51, 2018
  2. Y. Sasaki, M. Takezawa, S. Kim, H. Kawaharada and T. Maekawa, “Adaptive direct slicing of volumetric attribute data represented by trivariate B-spline functions.”, The International Journal of Advanced Manufacturing Technology, 49, pp.1791-1807, 2017
  3. T. Imai, T. Shibutani, K. Matsui, S. Kumagai, D. T. Tran, K. Mu and T. Maekawa. “Curvature sensitive analysis of axially compressed cylindrical tubes with corrugated surface using isogeometric analysis and experiment.”, Computer Aided Geometric Design, 49, pages 17-30, 2016
  4. M. Takezawa, T. Imai, K. Shida and T. Maekawa, “Fabrication of freeform objects by principal strips.”, ACM Transactions on Graphics, 35(6), Article No.225, 2016
  5. T. Sato, Y. Sato and T. Maekawa. “Tool path generation for chamfering drills holes of a pipe with constant width.”, Computer-Aided Design, 78, pages 26-35, 2016
  6. T. Kozaki, H Tadenuma and T. Maekawa. “Automatic generation of LEGO building instructions from multiple photographic images of real object.”, Computer-Aided Design, 70, pages 13-22, 2016
  7. Y. Yamaura, T. Nanya, H. Imoto and T. Maekawa. “Shape reconstruction from a normal map in terms of uniform bi-quadratic B-spline surfaces.”, Computer-Aided Design, 63, pages 129-140, 2015.
  8. T. Maekawa, “Differential geometry properties of lines of curvature of parametric surfaces and their visualization.”, Graphical Models, 76(4), pp.224-238, 2014
  9. T. Nanya, H. Yoshihara and T. Maekawa, “Reconstruction of complete 3D Models by voxel integration.”, Journal of Advanced Mechanical Design, Systems, and Manufacturing, 7(3), pp.362-376, 2013
  10. H. Yoshihara, T. Yoshii, T. Shibutani, and T. Maekawa, “Topologically Robust B-spline Surface Reconstruction from Point Clouds Using Level Set Methods and Iterative Geometric Fitting Algorithms.”, Computer Aided Geometric Design, 29(7), pp.422-434, 2012

前田 雄介

  1. 森山 祐樹, 前田 雄介, “産業用ロボットによるマニピュレーションのためのビューベースト教示再生”, 日本機械学会論文集C編 79巻 806号(頁3597-3608) 2013/10
  2. 小野 桂太郎, 小川 卓哉, 前田 雄介, 中谷 茂樹, 永安 剛, 清水 領, 大内 規嵩, “ステレオビジョンを用いた巻ばねの認識とビンピッキング”, 日本機械学会論文集C編 79巻 804号(頁2769-2779) 2013/08
  3. 槇田諭, 渡邉匠, 前田雄介, “三次元多指ケージングの十分条件の導出 ―対称ハンドによる四種類の単純形状物体の拘束―”, 日本ロボット学会誌 28巻 5号(頁599-605) 2010/06
  4. 槇田 諭,小田 浩太郎,前田 雄介, “ロボットマニピュレーションにおける不静定接触力の静力学的解析”, 日本ロボット学会誌 27巻 4号(頁427-433) 2009/05
  5. 前田雄介, 潮田達也, “空間掃引を用いた産業用マニピュレータの教示”, 日本機械学会論文集C編 74巻 737号(頁115-120) 2008/01

福田 淳二

  1. J. Enomoto, K. Onishi, and Y. Kobayashi et al., Gold cleaning methods for preparation of cell culture surfaces for self-assembled monolayers of zwitterionic oligopeptides, Journal of Bioscience and Bioengineering, in press
  2. K. Onishi, J. Enomoto, T. Araki, R. Takagi, H. Suzuki, and J. Fukuda, “Electrochemical microdevices for rapid and on-site determination of the minimum inhibitory concentration of antibiotics.”, Analyst, 143, pp.369-399, 2018
  3. T. Kageyama, C. Yoshimura, D. Myasnikova, K. Kataoka, T. Nittami, S. Maruo, and J. Fukuda, “Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine.”, Biomaterials, 154, pp.291-300, 2018
  4. T. Nittami, M. Mukai, K. Uematsu, YW. Li, S. Schroeder, ASM Chua, J. Fukuda, M. Fujita, RJ. Seviour, “Effects of different carbon sources on enhanced biological phosphorus removal and “Candidatus Accumulibacter” community composition under continuous aerobic condition.”, Applied Microbiology and Biotechnology,101(23-24), pp.8607-8619, 2017
  5. E. Bianchi, M. Piergiovanni, C. Arrigoni, J. Fukuda, A. Gautieri, M. Moretti, G. Dubini, “Herringbone-like hydrodynamic structures in microchannels: A CFD model to evaluate the enhancement of surface binding.”, Medical Engineering and Physics, 48, pp.62-67, 2017
  6. T. Osaki, T. Kageyama, Y. Shimazu, D. Mysnikova, S. Takahashi, S. Takimoto, J. Fukuda, “Flatbed epi relief-contrast cellular monitoring system for stable cell culture.”, Scientific Reports, 7:1897, 2017
  7. J. Enomoto, T. Kageyama, T. Osaki, F. Bonalumi, F. Marchese, A. Gautieri, E. Bianchi, G. Dubini, C. Arrigoni, M. Moretti, and J. Fukuda, “Catch-and-release of target cells using aptamer-conjugated electroactive zwitterionic oligopeptide SAM.”, Scientific Reports, 7:43375, 2017
  8. T. Nittami, L.B.M. Speirs, T. Yamada, I. Suzuki, J. Fukuda, F. Kurisu, R.J. Seviour, “Quantification of Chloroflexi Eikelboom morphotype 1851 for prediction and control of bulking events in municipal activated sludge plants in Japan.”, Applied Microbiology and Biotechnology, 101(9), pp.3861-3869, 2017
  9. T. Kageyama, T. Osaki, J. Enomoto, D. Myasnikova, T. Nittami, T. Hozumi, T. Ito, and J. Fukuda, “In situ cross-linkable gelatin-CMC hydrogels designed for rapid engineering of perfusable vasculatures.”, ACS Biomaterials Science & Engineering, 2(6), pp.1059–1066, 2016
  10. J. Enomoto, N. Mochizuki, K. Ebisawa, T. Osaki, T. Kageyama, D. Myasnikova, T. Nittami, J. Fukuda, “Engineering thick cell sheets by electrochemical desorption of oligopeptides on membrane substrates, Regenerative Therapy.”, 3, pp.24-31, 2016
  11. C. Arrigoni, M. Bongio, G. Talò, S. Bersini, J. Enomoto, J. Fukuda, M. Moretti, “Rational design of prevascularized large 3D tissue constructs using computational simulations and biofabrication of geometrically controlled microvessels.”, Advanced Healthcare Materials, 5(13), pp.1617-1626, 2016
  12. H. Sasaki, J. Enomoto, Y. Ikeda, H. Honda, J. Fukuda, and R. Kato, “Comparisons of cell culture medium using distribution of morphological features in microdevice.”, Journal of Bioscience and Bioengineering, 121(1) 117-23, 2016
  13. T. Osaki, T. Kakegawa, T. Kageyama, J. Enomoto, T. Nittami, J. Fukuda, “Acceleration of vascular sprouting from fabricated perfusable vascular-like structures.”, PLoS ONE, 10(4), e0123735, 2015
  14. Y. Kang, N. Mochizuki, A. Khademhosseini, J. Fukuda, Y. Yang, “Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach.”, Acta Biomaterialia, 11, pp.449-458, 2015
  15. SJ. McIlroy, T. Nittami, E. Kanai, J. Fukuda, AM. Saunders, and PH. Nielsen, “Reappraisal of the phylogeny and FISH probes for the analysis of the Competibacteraceae in wastewater treatment systems.”, Environmental Microbiology Reports, 7(2), pp.166-174, 2015
  16. T. Nittami, L. Speirs, J. Fukuda, M. Watanabe and R. Seviour, “Fluorescence in situ hybridization probes targeting members of the phylum Candidatus Saccharibacteria falsely target Eikelboom type 1851 filaments and other Chloroflexi members.”, Environmental Microbiology Reports, 6(6), pp.611-617, 2014
  17. T. Kageyama, T. Kakegawa, T. Osaki, J. Enomoto, T. Ito, T. Nittami and J. Fukuda, “Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.”, Biofabrication, 6, 025006, 2014
  18. J. Enomoto, R. Takagi, R. Onuki-Nagasaki, S. Fujita, and J. Fukuda, “Reverse transfection in microchamber arrays for cell migration assays.”, Sensors & Actuators: B, 190, pp.896–899, 2014
  19. Fujita Satoshi, Onuki-Nagasaki Reiko, Fukuda Junji, Enomoto Junko, Yamaguchi Suichi, Miyake Masato, “Development of super-dense transfected cell microarrays generated by piezoelectric inkjet printing.”, LAB ON A CHIP, 13(1), pp.77-80, 2013
  20. R. Takagi, J. Fukuda, K. Nagata, Y. Yawata, N. Nomura, and H. Suzuki, “Microfluidic microbial culture device for rapid determination of the minimum inhibitory concentration of antibiotics.”, Analyst, 138, pp.1000-1003, 2013
  21. N. Mochizuki, T. Kakegawa, T. Osaki, N. Sadr, NN. Kachouie, H. Suzuki, J. Fukuda, “Tissue Engineering Based on Electrochemical Desorption of an RGD-Containing Oligopeptide.”, Journal of Tissue Engineering and Regenerative Medicine, Journal of Tissue Engineering and Regenerative Medicine, 7, pp.236-243, 2013

ページの先頭へ

超3D造形技術に関する技術相談受付
横浜国立大学
横浜国立大学大学院工学研究院
共同研究推進センター

丸尾研究室(3D造形)
前川研究室(3D CAD)
前田研究室(ロボティクス)
福田研究室(バイオ・再生医療) 太田研究室(ウェアラブルセンサ)